On $ \delta$-derivations of $ n$-ary algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Characterization of $delta$-double derivations on rings and algebras

The main purpose of this article is to offer some characterizations of $delta$-double derivations on rings and algebras. To reach this goal, we prove the following theorem:Let $n > 1$ be an integer and let $mathcal{R}$ be an $n!$-torsion free ring with the identity element $1$. Suppose that there exist two additive mappings $d,delta:Rto R$ such that $$d(x^n) =Sigma^n_{j=1} x^{n-j}d(x)x^{j-1}+Si...

متن کامل

Double derivations of n-Lie algebras

After introducing double derivations of $n$-Lie algebra $L$ we‎ ‎describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual‎ ‎derivation Lie algebra $mathcal Der(L)$‎. ‎In particular‎, ‎we prove that the inner derivation algebra $ad(L)$‎ ‎is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra‎ ‎wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Izvestiya: Mathematics

سال: 2012

ISSN: 1064-5632,1468-4810

DOI: 10.1070/im2012v076n06abeh002618